Byblos

Calculus IV Test #1

Name:

**Date:** Apr/03/2012 **Duration:** 2h

I. (30 Points) Let f be a function defined over  $] - \pi$ ,  $\pi$  [defined as

$$f(x) = \begin{cases} -\pi - x & \text{if } -\pi < x \le -\frac{\pi}{2}; \\ x & \text{if } -\frac{\pi}{2} \le x < \frac{\pi}{2}; \\ \pi - x & \text{if } -\frac{\pi}{2} \le x < \pi. \end{cases}$$

- a. Sketch the graphic representation of f and show if f is even or odd.
- b. Prove that the Fourier series of f is

$$\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin\left(\frac{n\pi}{2}\right)\sin(nx)}{n^2}$$

c. Deduce the values of the sums:

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}, \quad \sum_{n=1}^{\infty} \frac{1}{n^2}, \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$

- II. (30 Points) For  $y \in \mathbb{R}$ , consider the function  $x = e^{-y^2}$ .
  - a. Find a parametrization for f of the form  $\mathbf{r}(t) = f(t)\mathbf{i} + t\mathbf{j}$  with  $t \in \mathbb{R}$  and f being a function to be determined. (This parametrization is considered in the questions that follow).
  - b. Verify that  $\mathbf{r}$  is smooth and sketch its graphic representation.
  - c. Find the unit tangent vector  $\mathbf{T}$  at any point of  $\mathbf{r}(t)$ .
  - d. Prove that  $\forall t \neq 0$  the principal unit normal N is never parallel to the x-axis.
  - e. Find the curvature at any point of  $\mathbf{r}(t)$ .
  - f. Prove that the curvature is maximum at the point P(1,0) and find the osculating circle at this point.
- III. (40 Points) The hyperbola of equation  $\frac{x^2}{4} y^2 = 1$  has two branches. The first branch lies in the side  $x \ge 0$  and the second in the side  $x \le 0$ . We denote by  $\mathcal{H}$  the part that lies in the side  $x \ge 0$ .
  - a. Verify that a parametrization for  $\mathcal{H}$  can be

$$\mathbf{r}(t) = 2\cosh(t)\mathbf{i} + \sinh(t)\mathbf{j}, \ t \in \mathbb{R}.$$

Show that  $\mathcal{H}$  is smooth and sketch its graphic representation. (The parametrization mentioned above is considered in the questions that follow).

- b. Find the velocity vector  $\mathbf{v}(t)$  and the unit tangent vector  $\mathbf{T}$ .
- c. Find the curvature  $\kappa$  as a function of t.
- d. Prove that  $\kappa$  is maximum at the points (2, 0).

- e. Prove that  $\kappa$  does not have a minimum. Give a geometric interpretation of this result.
- f. Find the osculating circle at the point Q(2,0).
- g. Generalize the result obtained in d. in order to find at which point of the **whole** hyperbola  $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ , the curvature  $\kappa$  is maximum.
- IV. (10 Points) Consider the planar curve given in polar coordinates by  $\rho = \rho(\theta)$ ,  $a < \theta < b$ . Show that the curvature is given by the formula

$$\kappa(\theta) = \frac{|2(\rho')^2 - \rho\rho'' + \rho^2|}{[\rho^2 + (\rho')^2]^{\frac{3}{2}}}, \text{ where } \rho' = \frac{d\rho}{d\theta}, \text{ and } \rho'' = \frac{d^2\rho}{d\theta^2}.$$

| Byblos      |                   |
|-------------|-------------------|
| Calculus IV | Date: May/14/2012 |
| Test #2     | Duration: 2h      |
| Name:       | ID:               |

I. (15 Points) Consider the surface (S) of equation  $F(x, y, z) = z - \cos\left(\frac{xy}{2\pi}\right) = 0$  and the point  $P_0(\pi, \pi, 0)$ .

- a. Verify that  $P_0$  is on the surface (S).
- b. Find the equation of the plane (P), tangent on the surface at the point  $P_0$ .
- c. Find a parametric equation for the line (L), normal to the surface at the point  $P_0$ .
- II. (15 Points) Consider the function  $f(x, y) = \cos(xy)$ .
  - a. Linearize f(x, y) near the point  $P(\frac{\pi}{2}, 1)$ .
  - b. Find an upper bound for the magnitude of the error E(x, y) over the rectangle

$$R: \left| x - \frac{\pi}{2} \right| < 0.1, \ |y - 1| < 0.1$$

# III. (15 Points) Let (P) be the paraboloid of equation $z = x^2 + y^2$ and (S) the sphere of equation $x^2 + y^2 + z^2 = 2$ .

- a. Prove that the intersection of (P) and (S) is the circle (C) of equation  $x^2 + y^2 = 1$  that lies in the plane z = 1.
- b. Let  $\mathcal{R}$  be the region enclosed by (S) from above, (P) from below and lying in the first octant. Find the bounds of the region  $\mathcal{R}$  using rectangular, cylindrical and spherical coordinates.
- c. Find the volume of  $\mathcal{R}$ .
- IV. (15 Points) Find the absolute maximum and minimum of the function  $f(x, y) = -\frac{3}{2}x^2 + xy + \frac{3}{2}y^2 + x + 3y + 4$ over the triangle enclosed by the lines y = x, y = -x and y = -2.
- V. (15 Points) Let x > 0. Study the function  $f(x, y) = x((\ln x)^2 + y^2)$  for local maxima, local minima and saddle points.
- VI. (15 Points) We are going to manufacture a rectangular box with equal length and width, no top, one diagonal divider (see the figure below) and which has a fixed volume of 9  $cm^3$ . It has metal divider, but cardboard sides. Metal costs  $\sqrt{2}$  times as expensive as cardboard. For what dimensions x, and z is the cost minimized?



VII. (15 Points) Find the triple integral  $\iiint_D xyz \, dx \, dy \, dz$  where D is the part of the sphere, centered at the origin and of radius 1, that lies in the first octant.

Spring 2012

| Byblos                    |                                   |
|---------------------------|-----------------------------------|
| Calculus IV<br>Final Exam | Date: Jun/08/2012<br>Duration: 2h |
| Name:                     | ID:                               |

Spring 2012

- I. (15 Points) Consider the vector field  $\mathcal{F} = (-\sin(x+y)+2xe^{y+z})\mathbf{i} + (-\sin(x+y)+x^2e^{y+z})\mathbf{j} + (x^2e^{y+z})\mathbf{k}$ .
  - a. Prove that  $\mathcal{F}$  is conservative.
  - b. Find a potential function f, for the field  $\mathcal{F}$ .
  - c. Find the flow of  $\mathcal{F}$  over the curve  $\mathbf{r}(t) = \sin(t)\mathbf{i} + t\mathbf{j} + \sin(t)\mathbf{k}$  from  $t = \pi$  to  $t = 2\pi$ .
- II. (15 Points) Calculate the counterclockwise circulation of the vector field  $\mathcal{F} = xy^3 \mathbf{i} y^3 \mathbf{j}$  around the curve C which consists of the part of the parabola  $y = x^2 - 1$  for  $-1 \le x \le 1$  along with the positive semi-circle centered at the origin and joining (-1, 0) to (1, 0):
  - a. Using Green's theorem.
  - b. Directly using line integral.

# III. (15 Points)

- a. Find the volume of the solid enclosed by the paraboloid of equation  $z = a^2 x^2 y^2$  from above and by the plane of equation z = 0 from below.
- b. We denote by D the region inside the paraboloid  $z = 5 x^2 y^2$  bounded below by the plane z = 1 and above by the plane z = 4. Find the outward flux of  $\mathcal{F} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$  across the boundary of D:
  - i. Using the divergence theorem.
  - ii. Directly using surface integral.
- IV. (15 Points) Let (P) be the paraboloid of equation  $x^2 + y^2 = 2z$ , and the vector field  $\mathcal{F} = xy \mathbf{i} + xz^2 \mathbf{j} + xy^2 \mathbf{k}$ . Let C be the intersection of (P) with the plan of equation z = 2.

Find the counterclockwise circulation of  $\mathcal{F}$  around the curve C when viewed from above:

- (a) Directly using line integral.
- (b) Using Stokes' theorem in two different ways.
- V. (15 Points) Study the function  $f(x,y) = \frac{xy}{(1+x^2)(1+y^2)}$  for local maxima, local minima and saddle points.
- VI. (15 Points) We are going to manufacture a rectangular box in order to pack an iPhone with its accessories. Apple suggests a box that has 2x as length, 2y as a width, z as a height, no top, two dividers (see the figure below) and a fixed volume of 72 cm<sup>3</sup>. It has metal dividers, but cardboard sides. Metal costs 2 times as expensive as cardboard. For what dimensions Apple can minimize the cost of the box?

# VII. (15 Points) Find the triple integral $\iiint_D \frac{dx \, dy \, dz}{\sqrt{x^2 + y^2 + z^2}}$ ,

where D is the domain limited by the two spheres

$$x^{2} + y^{2} + z^{2} = 1$$
 and  $x^{2} + y^{2} + z^{2} = 4$ .



Byblos

| Calculus IV | <b>Date:</b> Apr/03/2013 |
|-------------|--------------------------|
| Test #1     | <b>Duration:</b> 2h      |
| Name:       | ID:                      |

# I. (10 Points) Short questions

- a. Consider the curve C given by the vector function  $\mathbf{r}(t) = \cos(t)\mathbf{i} + \sin(t)\mathbf{j} + \sin(t)\mathbf{k}$ . Prove that C lies on **four** surfaces in the space and find their equations and types.
- b. Consider the smooth curve C given by the polar equation  $\rho = \rho(\theta)$ . Prove that the arc length of the curve C between  $\theta_1$  and  $\theta_2$  (where  $\theta_1 < \theta_2$ ) is given by the formula

$$L = \int_{\theta_1}^{\theta_2} \sqrt{(\rho'(\theta))^2 + (\rho(\theta))^2} d\theta$$

II. (35 Points) Let f be a function defined over  $] - \pi$ ,  $\pi[$  as

$$f(x) = \begin{cases} -x - \frac{\pi}{2} & \text{if } -\pi < x < -\frac{\pi}{2}, \\ x + \frac{\pi}{2} & \text{if } -\frac{\pi}{2} < x < 0, \\ -x + \frac{\pi}{2} & \text{if } 0 < x < \frac{\pi}{2}, \\ x - \frac{\pi}{2} & \text{if } \frac{\pi}{2} < x < \pi. \end{cases}$$

- a. Sketch the graphic representation of f.
- b. Prove that the Fourier series of f is

$$\frac{\pi}{4} + \frac{2}{\pi} \sum_{n=1}^{\infty} \left( \frac{1 + (-1)^n - 2\cos\left(\frac{n\pi}{2}\right)}{n^2} \right) \cos(nx)$$

c. Prove that the Fourier series can be simplified to

$$\frac{\pi}{4} + \frac{2}{\pi} \sum_{n=0}^{\infty} \frac{\cos(2(2n+1)x)}{(2n+1)^2}$$

d. Deduce the values of

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}, \quad \sum_{n=1}^{\infty} \frac{1}{n^2}, \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$

- III. (25 Points) Consider the vector function given by  $\mathbf{r}(t) = (a\cos(t) + \sin t)\mathbf{i} + (\cos(t) a\sin(t))\mathbf{j}$ and  $\mathcal{C}, t \in \mathbb{R}$  its representative curve.
  - a. Find the velocity  $\mathbf{v}(t)$ , the speed  $|\mathbf{v}(t)|$  and prove that  $\mathcal{C}$  is smooth.
  - b. Find the tangent **T**.
  - c. Find the curvature  $\kappa$  and deduce the type of C.
  - d. Find the normal vector **N** without using  $\frac{d\mathbf{T}}{dt}$ .
  - e. Prove that **r** can be parameterized as  $\mathbf{r}(\tau) = \alpha \cos(\tau)\mathbf{i} + \alpha \sin(\tau)\mathbf{j}$  where  $\tau$  is a parameter to express in function of t and  $\alpha$  a constant to be expressed in function of a.

- IV. (40 Points) Consider the curve C given by its polar equation  $\rho = e^{-k\theta}$ , where k > 0 and  $\theta \in \mathbb{R}$ . This curve is called the *logarithmic spirale*.
  - a. Find a parametrization for C of the form  $\mathbf{r}(\theta) = x(\theta)\mathbf{i} + y(\theta)\mathbf{j}$ .
  - b. Find the velocity  $\mathbf{v}(\theta)$  and the speed  $|\mathbf{v}(\theta)|$  then deduce the smoothness of  $\mathcal{C}$ .
  - c. Find the tangent vector  $\mathbf{T}$  and the principal unit normal  $\mathbf{N}$ .
  - d. Find the curvature  $\kappa.$
  - e. Prove that the curve  $\mathcal{C}$  has neither maximum nor minimum curvature.
  - f. Prove that,  $\forall t$ , the angle between the position vector and the tangent vector is constant.
  - g. Now consider the case where k = 1 and  $\theta \in [0, +\infty)$ 
    - i. Find the osculating circle at  $\theta = \pi$ .
    - ii. Find the length of the whole curve.

Name:

| Byblos                 |                                                 |
|------------------------|-------------------------------------------------|
| Calculus IV<br>Test #2 | <b>Date:</b> May/09/2013<br><b>Duration:</b> 2h |
|                        |                                                 |

I. (15 Points) Consider the surface (S) of equation  $F(x, y, z) = \cos\left(\frac{xy}{6z}\right) - \frac{\sqrt{3}}{2} = 0$  and the point  $P_0(\pi, \pi, \pi)$ .

- a. Verify that  $P_0$  is on the surface (S).
- b. Find the equation of the plane (P), tangent on the surface at the point  $P_0$ .
- c. Find a parametric equation for the line (L), normal to the surface at the point  $P_0$ .
- II. (15 Points) Consider the function  $f(x, y) = \cos(xy) + \sin(xy)$ .
  - a. Linearize f(x, y) near the point  $P(\frac{\pi}{2}, 1)$ .
  - b. Find an upper bound for the magnitude of the error E(x, y) over the rectangle

$$R: \left| x - \frac{\pi}{2} \right| < 0.1, \ |y - 1| < 0.1$$

III. (20 Points) Let (S) be the sphere of equation  $x^2 + y^2 + z^2 = R^2$ . Consider the planes  $(P_1)$ : z = R/2 and  $(P_2)$ : z = -R/2.

Let  $\mathcal{R}$  be the region enclosed by (S) laterally,  $(P_1)$  from above and  $(P_2)$  from below. Find the volume of  $\mathcal{R}$  using cylindrical and spherical coordinates.

- IV. (15 Points) Find the absolute maximum and minimum of the function  $f(x, y) = x^3 + y^3 + 3xy$  over the domain  $D = \{(x, y), |x| < 2, |y| < 2\}$ .
- V. (15 Points) Let x > 0. Study the function  $f(x, y) = x^2((\ln x)^2 + x^2y^2)$  for local maxima, local minima and saddle points.
- VI. (20 Points) We are going to manufacture a rectangular box with equal length and width, no top, two dividers (see the figure below) and which has a fixed volume of 98  $cm^3$ . It has metal dividers, but cardboard sides. Metal costs  $\sqrt{2}$  times as expensive as cardboard. What are the dimensions that minimize the cost of the box?



VII. (10 Points) Find the domain D such that the triple integral  $\iiint_D (1 - 2x^2 - y^2 - z^2) dx dy dz$  is maximum.

ID:

| Byblos      |                   |
|-------------|-------------------|
| Calculus IV | Date: Jun/01/2013 |
| Final Exam  | Duration: 2h      |
| Name:       | ID:               |

Spring 2013

I. (20 Points) Consider the vector field  $\mathcal{F} = (2xyz^2 - y\sin(xy))\mathbf{i} + (x^2z^2 - x\sin(xy))\mathbf{j} + (2x^2yz + e^z)\mathbf{k}$ .

- a. Prove that  $\mathcal{F}$  is conservative.
- b. Find a potential function f, for the field  $\mathcal{F}$ .
- c. Find the flow of  $\mathcal{F}$  over the curve  $\mathbf{r}(t) = \sin(t) \mathbf{i} + \cos(t) \mathbf{j} + \sin(t) \mathbf{k}$  from t = 0 to  $t = \frac{\pi}{2}$ .
- II. (20 Points) Calculate the counterclockwise circulation of the vector field  $\mathcal{F} = xy^3 \mathbf{i} y^3 \mathbf{j}$  around the curve C which consists of the part of the parabola  $y = 1 x^2$  for  $-1 \le x \le 1$  along with the line connecting (-1, 0) to (0, -1) and the line connecting (0, -1) to (1, 0):
  - a. Using Green's theorem.
  - b. Directly using line integral.

# III. (30 Points)

- a. Prove that the volume of the solid enclosed by the cone of equation  $z = \sqrt{\frac{x^2+y^2}{3}}$  from below and by the sphere of equation  $x^2 + y^2 + z^2 = R^2$  from above is equal to  $\frac{\pi}{3}R^3$ .
- b. Prove, using the surface integral that the area of the cap of the sphere  $x^2 + y^2 + z^2 = R^2$  cut by the plane  $z = \frac{R}{2}$  is equal to  $\pi R^2$ .
- c. We denote by *D* the region inside the cone  $z = \sqrt{\frac{x^2+y^2}{3}}$  bounded below by the sphere  $x^2 + y^2 + z^2 = 1$ and above by the sphere  $x^2 + y^2 + z^2 = 16$ . Find the outward flux of  $\mathcal{F} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$  across the boundary of *D*:
  - i. Using the divergence theorem.
  - ii. Directly using surface integral.
- IV. (15 Points) Let C be the curve intersection of the plane y + z = 2 and the cylinder  $x^2 + y^2 = 4$ . Find the counterclockwise circulation of the vector field  $\mathcal{F} = y \mathbf{i} + x^2 \mathbf{j} + xz \mathbf{k}$  around the curve C when viewed from above, using Stokes' theorem or directly using a line integral.
- V. (20 Points) We are going to manufacture a cylindrical box in order to pack a soft chocolate with biscuits. The manufacturer suggests a box that has R as radius, H as height with top, one divider (see the figure below) and a fixed volume of  $27\pi$  cm<sup>3</sup>. It has cardboard divider, but plastic sides. Cardboard costs  $\pi$  times as expensive as plastic. For what dimensions can the manufacturer minimize the cost of the box?

# VI. (10 Points) Consider a > 0, b > 0 and c > 0. Prove that the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ is equal to $\frac{4}{3}\pi abc$ .



Byblos

| Calculus IV | <b>Date:</b> Apr/07/2014 |
|-------------|--------------------------|
| Test #1     | <b>Duration:</b> 2h      |
| Name:       | ID:                      |

# I. (15 Points) Short questions

- a. What is the difference between the vector functions  $r_1(t) = t\mathbf{i} + t^2\mathbf{j}$  and  $r_2(t) = t^3\mathbf{i} + t^6\mathbf{j}$ .
- b. Consider the curve C given by the vector function  $\mathbf{r}(t) = \cos(t)\mathbf{i} + \sin(t)\mathbf{k}$ . Prove that C lies, at least, on **three** surfaces in the space by giving their equations and types.
- c. Suggest a parametrisation for a curve that has a non-zero constant curvature and a torsion equal to zero.
- II. (35 Points) Let f be a function defined over  $] \pi$ ,  $\pi[$  as

$$f(x) = \begin{cases} (x+\pi)^2 & \text{if } -\pi < x < -\frac{\pi}{2}, \\ \\ \frac{\pi^2}{4} & \text{if } -\frac{\pi}{2} < x < \frac{\pi}{2}, \\ \\ (x-\pi)^2 & \text{if } \frac{\pi}{2} < x < \pi. \end{cases}$$

- a. Sketch the graphic representation of f and show if it's even or odd.
- b. Prove that the Fourier series of f is

$$\frac{\pi^2}{6} + \sum_{n=1}^{\infty} \left( \frac{2}{n^2} \cos\left(\frac{n\pi}{2}\right) + \frac{4}{\pi n^3} \sin\left(\frac{n\pi}{2}\right) \right) \cos(nx)$$

c. Prove that the Fourier series can be simplified to

$$\frac{\pi^2}{6} + \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^3} \cos\left((2n+1)x\right) + \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos\left((2nx)\right)$$

d. Deduce the values of

$$\sum_{n=1}^{\infty} \frac{1}{n^2}, \quad \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^3}, \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$

- III. (40 Points) Consider the curve C given by  $\mathbf{r}(\theta) = a\theta \cos(\theta)\mathbf{i} + a\theta \sin(\theta)\mathbf{j}$ , where a > 0 and  $\theta \in \mathbb{R}$ . This curve is called the *archimedian spirale*.
  - a. Find the velocity  $\mathbf{v}(\theta)$  and the speed  $|\mathbf{v}(\theta)|$  then deduce the smoothness of  $\mathcal{C}$ .
  - b. Find the tangent vector **T**.
  - c. Find the curvature  $\kappa$ .
  - d. Prove that the curve C has a maximum curvature and find at which point it has this maximum curvature.
  - e. Show that the curve  $\mathcal{C}$  has no minimum curvature.
  - f. Find the principal unit normal **N**.
  - g. Find the osculating circle at the point of maximum curvature.
  - h. Show that  $\forall \theta > 0$  the position vector is never orthogonal to the tangent.

- IV. (20 Points) Consider  $\mathbf{r}(t) : I \to \mathbb{R}^3$  such that the curve of  $\mathbf{r}(t)$  is of torsion  $\tau \neq 0$ . We consider also that the curve lies on a sphere centered at the origin and of radius R and that it verifies |r'(t)| = 1. We call these curves *spherical curves*. We denote by  $\kappa$  its curvature,  $\tau$  its torsion,  $\mathbf{T}$  its unit tangent,  $\mathbf{N}$  its principal unit normal and  $\mathbf{B}$  its binormal.
  - a. Prove that  $|\mathbf{r}(t)|^2 = R^2$  and that  $\mathbf{r}(t) \perp \mathbf{T}$ .
  - b. Deduce that  $\mathbf{r} \cdot \mathbf{N} = -\frac{1}{\kappa}$ . Deduce that  $\exists a > 0$  such that  $\forall t \in I$  we have  $\kappa \ge a$ .
  - c. Prove that  $\mathbf{r} \cdot \mathbf{B} = \frac{\kappa'}{\kappa^2 \tau}$ .
  - d. Deduce that the *spherical curves* verifies the relation

$$\left(\frac{1}{\kappa}\right)^2 + \left(\frac{\kappa'}{\kappa^2\tau}\right)^2 = R^2$$

| Byblos      |              |
|-------------|--------------|
| Calculus IV | Date: May/12 |
| Test #2     | Duration: 2h |
| Name:       | ID:          |

Name:

I. (15 Points) Consider the surface (S) of equation  $F(x, y, z) = \sin\left(\frac{\pi x}{2z}\right) - e^{x^2 - y^2} = 0$  and the point  $P_0(1, 1, 1).$ 

- a. Verify that  $P_0$  is on the surface (S).
- b. Find the equation of the plane (P), tangent on the surface at the point  $P_0$ .
- c. Find a parametric equation for the line (L), normal to the surface at the point  $P_0$ .
- II. (15 Points) Consider the function  $f(x, y) = x \cos\left(\frac{\pi}{2}y\right) + y \cos\left(\frac{\pi}{2}x\right)$ .
  - a. Linearize f(x, y) near the point  $P(\frac{2}{3}, \frac{2}{3})$ .
  - b. Find an upper bound for the magnitude of the error E(x, y) over the rectangle

$$R: \left| x - \frac{2}{3} \right| < 0.1, \left| y - \frac{2}{3} \right| < 0.1$$

III. (25 Points) Let  $\mathcal{P}$  be the paraboloid of equation  $z = 2 - x^2 - y^2$  and  $\mathcal{C}$  the cone of equation  $z = \sqrt{x^2 + y^2}$ .

- a. Prove that the intersection of  $\mathcal{P}$  and  $\mathcal{C}$  is a circle and find its radius and center.
- b. Let R be the ice cream limited from above by  $\mathcal{P}$  and from below by  $\mathcal{C}$ . Define R in the rectangular, cylindrical and spherical systems of coordinates.
- c. Find the volume of R using the cylindrical coordinates.
- IV. (15 Points) Find the absolute maximum and minimum of the function  $f(x, y) = x^3 y^3 3xy$  over the domain  $D = \{(x, y), |x| \le 2, |y| \le 2\}.$
- V. (20 Points) Let x > 0. Study the function  $f(x, y) = x^3((\ln x)^2 + 2x^2y^2)$  for local maxima, local minima and saddle points.
- VI. (20 Points) We are going to manufacture a rectangular box with equal length and width, no top, three dividers (see the figure below) and which has a fixed volume of  $128 \text{ } cm^3$ . It has metal dividers, but cardboard sides. Metal costs  $\sqrt{2}$  times as expensive as cardboard. What are the dimensions that minimize the cost of the box?



| Byblos      |              |
|-------------|--------------|
| Calculus IV | Date: Jun-02 |
| Final Exam  | Duration: 2h |
| Name:       | ID:          |

Spring 2014

I. (15 Points) Consider the curve C of equation  $\mathbf{r}(t) = \sin(3t)\mathbf{i} + \cos(t)\mathbf{j} + \cos(t)\mathbf{k}$  for t = 0 to  $t = \frac{\pi}{3}$ , and the vector field  $\mathcal{F} = \left(\frac{1}{yz} + ye^{xy}\right)\mathbf{i} + \left(xe^{xy} - \frac{x}{y^2z} - \pi z\sin(\pi yz)\right)\mathbf{j} - \left(\frac{x}{yz^2} + \pi y\sin(\pi yz)\right)\mathbf{k}$ . Find the flow of  $\mathcal{F}$  over the curve C.

- II. (15 Points) Calculate the counterclockwise circulation of the vector field  $\mathcal{F} = xy^3 \mathbf{i} x^3 y \mathbf{j}$  around the closed curve C formed by the parabolas  $y = 1 x^2$  and  $y = 2 2x^2$ :
  - a. Using Green's theorem.
  - b. Directly using line integral.
- III. (35 Points) Let a > 0. Consider the paraboloid P of equation  $z = a^2(x^2 + y^2)$  and the plan Q of equation z = 1.
  - a. Prove that the volume of the solid enclosed by P from below and Q from above is equal to  $\frac{\pi}{2a^2}$ .
  - b. Find the volume of the solid S enclosed laterally by the paraboloids  $P_1$  of equation  $z = x^2 + y^2$  and  $P_2$  of equation  $z = 3(x^2 + y^2)$  and from above by the plan z = 1 using:
    - i. the result found in a.,
    - ii. triple integrals with cylindrical coordinates,
    - iii. triple integrals with spherical coordinates.
  - c. Prove, using the surface integral that the area of the paraboloid P situated below the plan Q is equal to

$$\frac{\pi}{6a^4} \left( (4a^2 + 1)^{\frac{3}{2}} - 1 \right).$$

- d. We denote by D the boundary of the solid S defined in b. . Find the outward flux of  $\mathcal{F} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$  across the boundary of D:
  - i. Using the divergence theorem.
  - ii. Directly using surface integral.

IV. (20 Points) Consider the paraboloid P of equation  $z = x^2 + y^2$  and the cone K of equation  $z = \sqrt{x^2 + y^2}$ .

- a. Prove that, for z > 0, the intersection of P and K is a circle (denoted by C) and determine its center and radius.
- b. Find the counterclockwise circulation of the vector field  $\mathcal{F} = y\mathbf{i} x\mathbf{j}$  around C when viewed from above using
  - i. Stokes' theorem in three different ways.
  - ii. line integral.
- V. (15 Points) Study the function  $f(x, y) = xy \ln(x) \ln(y)$  for local maxima, local minima and saddle points.
- VI. (10 Points) Prove that the area of the lateral surface of the regular cone of revolution of height H and of circular basis of radius R is equal to

$$\pi R \sqrt{R^2 + H^2}.$$

Byblos

| Calculus IV | <b>Date:</b> Mar/17/2015 |
|-------------|--------------------------|
| Test #1     | <b>Duration:</b> 2h      |
| Name:       | ID:                      |

### I. (25 Points) Short questions

- a. What is the difference between the vector functions  $r_1(t) = t\mathbf{i} + t^2\mathbf{j}$  and  $r_2(t) = t^3\mathbf{i} + t^6\mathbf{j}$ .
- b. Consider the curve C given by the vector function  $\mathbf{r}(t) = \cos(2t)\mathbf{i} + \cos(t)\mathbf{j} + \sin(t)\mathbf{k}$ . Prove that C lies, at least, on **four quadratic** surfaces in the space by giving their equations and types.
- c. Suggest a parametrisation for a curve that has a non-zero constant curvature and a torsion equal to zero.
- d. Find the equation of the osculating circle of the curve given by  $y = x^3 3x$  at the point P(1, -2).
- e. Find the torsion of the curve given by

$$\mathbf{r}(t) = (e^t \sin t - e^{2t} \cos t)\mathbf{i} + (2e^t \sin t + e^{2t} \cos t)\mathbf{j} + (e^t \sin t - 5e^{2t} \cos t)\mathbf{k}.$$

II. (30 Points) Let f be a function defined over  $] - \pi, \pi[$  as

$$f(x) = \begin{cases} (x+\pi)^2 & \text{if } -\pi < x < -\frac{\pi}{2}, \\ \\ \frac{\pi^2}{4} & \text{if } -\frac{\pi}{2} < x < \frac{\pi}{2}, \\ \\ (x-\pi)^2 & \text{if } \frac{\pi}{2} < x < \pi. \end{cases}$$

- a. Sketch the graphic representation of f and show if it's even or odd.
- b. Prove that the Fourier series of f is

$$\frac{\pi^2}{6} + \sum_{n=1}^{\infty} \left( \frac{2}{n^2} \cos\left(\frac{n\pi}{2}\right) + \frac{4}{\pi n^3} \sin\left(\frac{n\pi}{2}\right) \right) \cos(nx)$$

c. Prove that the Fourier series can be simplified to

$$\frac{\pi^2}{6} + \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^3} \cos\left((2n+1)x\right) + \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos\left((2nx)\right)$$

d. Deduce the values of

$$\sum_{n=1}^{\infty} \frac{1}{n^2}, \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)^3}, \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$

- III. (40 Points) Consider the curve C given by  $\mathbf{r}(t) = at \cos(t)\mathbf{i} + at \sin(t)\mathbf{j}$ , where a > 0 and  $t \in \mathbb{R}$ . This curve is called the *archimedian spirale*.
  - a. Find the velocity  $\mathbf{v}(t)$  and the speed  $|\mathbf{v}(t)|$  then deduce the smoothness of  $\mathcal{C}$ .
  - b. Find the unit tangent vector **T**.
  - c. Find the curvature  $\kappa$ .

- d. Prove that the curve  $\mathcal{C}$  has a maximum curvature and find at which point it has this maximum curvature.
- e. Show that the curve  $\mathcal{C}$  has no minimum curvature.
- f. Find the principal unit normal **N**.
- g. Find the osculating circle at the point of maximum curvature.
- h. Show that  $\forall t > 0$  the position vector is never orthogonal to the tangent.
- IV. (15 Points) Consider  $\mathbf{r}(t) : I \to \mathbb{R}^3$  such that the curve of  $\mathbf{r}(t)$  is of torsion  $\tau \neq 0$ . We consider also that the curve lies on a sphere centered at the origin and of radius R and that it verifies |r'(t)| = 1. We call these curves spherical curves. We denote by  $\kappa$  its curvature,  $\tau$  its torsion, **T** its unit tangent, **N** its principal unit normal and **B** its binormal.
  - a. Prove that  $|\mathbf{r}(t)|^2 = R^2$  and that  $\mathbf{r}(t) \perp \mathbf{T}$ .

b. Deduce that  $\mathbf{r} \cdot \mathbf{N} = -\frac{1}{\kappa}$ . Deduce that  $\exists a > 0$  such that  $\forall t \in I$  we have  $\kappa \ge a$  (that is  $\kappa$  has a minimum).

Name:

| Byblos      |                |
|-------------|----------------|
| Calculus IV | Date: April 21 |
| Test #2     | Duration: 2h   |
|             |                |

Spring 2015

ID:

I. (20 Points) Consider the surface (S) of equation  $F(x, y, z) = \frac{x+y}{z} - e^{x^2-y^2} = 0$  and the point  $P_0(1, 1, 2)$ .

- a. Verify that  $P_0$  is on the surface (S).
- b. Find the equation of the plane (P), tangent on the surface at the point  $P_0$ .
- c. Find a parametric equation for the line (L), normal to the surface at the point  $P_0$ .
- II. (20 Points) Find the absolute maximum and minimum of the function  $f(x, y) = x^3 y^3 3xy$  over the domain  $D = \{(x, y), |x| \le 2, |y| \le 2\}$ .
- III. (20 Points) Let  $x \in \mathbb{R}$ . Study the function  $f(x, y) = e^x(x^2 + e^{2x}y^2)$  for local maxima, local minima and saddle points.
- IV. (20 Points) We are going to manufacture a rectangular box with equal length and width, no top, three dividers (see the figure below) and which has a fixed volume of 128  $cm^3$ . It has metal dividers, but cardboard sides. Metal costs  $\sqrt{2}$  times as expensive as cardboard. What are the dimensions that minimize the cost of the box?



# V. (10 Points) Find the following triple integrals

- a.  $\iiint_D (x+y)^2 \, dx \, dy \, dz \text{ where } D \text{ is the cylinder of equation } x^2 + y^2 = 1 \text{ with } 0 \le z \le 1,$
- b.  $\iiint_D \frac{e^z}{1+x+y+xy} \, dx \, dy \, dz \text{ where } D \text{ is the solid cube with } 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1.$

VI. (20 Points) Let  $\mathcal{P}$  be the paraboloid of equation  $z = 2 - x^2 - y^2$  and  $\mathcal{C}$  the cone of equation  $z = \sqrt{x^2 + y^2}$ .

- a. Prove that the intersection of  $\mathcal{P}$  and  $\mathcal{C}$  is a circle and find its radius and center.
- b. Let R be the ice cream limited from above by  $\mathcal{P}$  and from below by  $\mathcal{C}$ . Define R in the rectangular and cylindrical systems of coordinates.
- c. Find the volume of R.

| Byblos                    |                              |
|---------------------------|------------------------------|
| Calculus IV<br>Final Exam | Date: May-15<br>Duration: 2h |
| Name:                     | ID:                          |

Spring 2015

Name:

- I. (25 Points) Consider the curve C of equation  $\mathbf{r}(t) = \sin(3t)\mathbf{i} + \cos(t)\mathbf{j} + \cos(t)\mathbf{k}$  for t = 0 to  $t = \frac{\pi}{3}$ , and the vector field  $\mathcal{F} = \left(\frac{a}{yz} + ye^{xy}\right) \mathbf{i} + \left(xe^{xy} - \frac{bx}{y^2z} - \pi z\sin(\pi yz)\right) \mathbf{j} + \left(-\frac{x}{yz^2} - \pi y\sin(\pi yz)\right) \mathbf{k}$  where aand b are real numbers.
  - a. Find a and b such that  $\mathcal{F}$  is conservative.
  - b. We consider a and b as found in a. Find a potential function f for  $\mathcal{F}$ .
  - c. Deduce the flow of  $\mathcal{F}$  over the curve  $\mathcal{C}$ .
- II. (20 Points) Calculate the counterclockwise circulation of the vector field  $\mathcal{F} = -xy^3 \mathbf{i} + x^3 y \mathbf{j}$  around the closed curve C formed by the positive part of the circle of equation  $x^2 + y^2 = 1$  and the line connecting the point (-1, 0) to the point (1, 0):
  - a. Using Green's theorem.
  - b. Directly using line integral.
- III. (35 Points) Let a > 0. Consider the paraboloid P of equation  $z = a^2(x^2 + y^2)$  and the plan Q of equation z = 1.
  - a. Prove that the volume of the solid enclosed by P from below and Q from above is equal to  $\frac{\pi}{2a^2}$
  - b. Find the volume of the solid S enclosed laterally by the paraboloids  $P_1$  of equation  $z = x^2 + y^2$  and  $P_2$ of equation  $z = 3(x^2 + y^2)$  and from above by the plan z = 1 using:
    - i. the result found in part a.
    - ii. triple integrals with spherical coordinates.
  - c. Prove, using the surface integral that the area of the paraboloid P situated below the plan Q is equal to

$$\frac{\pi}{6a^4} \left( (4a^2 + 1)^{\frac{3}{2}} - 1 \right).$$

- d. We denote by D the boundary surface of the solid S defined in part b. . Find the outward flux of  $\mathcal{F} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$  across the boundary of D:
  - i. Using the divergence theorem.
  - ii. Directly using surface integral.

IV. (20 Points) Consider the paraboloid P of equation  $z = x^2 + y^2$  and the cone K of equation  $z = \sqrt{x^2 + y^2}$ .

- a. Prove that the intersection of P and K is a circle that we denote by C.
- b. Find the counterclockwise circulation of the vector field  $\mathcal{F} = y\mathbf{i} x\mathbf{j}$  around C when viewed from above using
  - a. Stokes' theorem in two different ways,
  - b. line integral.
- V. (10 Points) Prove, using surface integral, that the area of the lateral surface of the regular cone of revolution of height H and of circular basis of radius R is equal to

$$\pi R\sqrt{R^2 + H^2}.$$

Byblos

| Calculus IV | <b>Date:</b> Jun/16/2015 |
|-------------|--------------------------|
| Test #1     | <b>Duration:</b> 2h      |
| Name:       | ID:                      |

# I. (35 Points) Short questions

- a. Compare the two vector functions  $r_1(t) = t\mathbf{i} + t^2\mathbf{j}$  and  $r_2(t) = t^3\mathbf{i} + t^6\mathbf{j}$ .
- b. Consider the curve C given by the vector function  $\mathbf{r}(t) = \cos(2t)\mathbf{i} + \cos(t)\mathbf{j} + \sin(t)\mathbf{k}$ . Prove that C lies, at least, on **four quadratic** surfaces in the space by giving their equations and types.
- c. Suggest a parametrisation for a curve that has a non-zero constant curvature and a torsion equal to zero.
- d. Find the equation of the osculating circle of the curve given by  $y = x^3 3x$  at the point P(1, -2).
- e. Find the torsion of the curve given by

$$\mathbf{r}(t) = (e^t \sin t - e^{2t} \cos t)\mathbf{i} + (2e^t \sin t + e^{2t} \cos t)\mathbf{j} + (e^t \sin t - 5e^{2t} \cos t)\mathbf{k}.$$

II. (25 Points) Let f be a function defined over  $] - \pi, \pi[$  as

$$f(x) = \begin{cases} -x - \pi/2 & \text{if } -\pi < x < -\frac{\pi}{2}, \\ 1 & \text{if } -\frac{\pi}{2} < x < \frac{\pi}{2}, \\ x - \pi/2 & \text{if } \frac{\pi}{2} < x < \pi. \end{cases}$$

- a. Sketch the graphic representation of f.
- b. Prove that the Fourier series of f is

$$\frac{1}{2} + \frac{\pi}{8} + \frac{2}{\pi} \sum_{n=1}^{\infty} \left( \frac{\sin(\frac{n\pi}{2})}{n} + \frac{(-1)^n - \cos(\frac{n\pi}{2})}{n^2} \right) \cos(nx)$$

c. Deduce the values of the following sums

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}, \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$

- III. (35 Points) Consider the curve C given by  $\mathbf{r}(t) = at \cos(t)\mathbf{i} + at \sin(t)\mathbf{j}$ , where a > 0 and  $t \in \mathbb{R}$ . This curve is called the *archimedian spirale*.
  - a. Find the velocity  $\mathbf{v}(t)$  and the speed  $|\mathbf{v}(t)|$  then deduce the smoothness of  $\mathcal{C}$ .
  - b. Find the unit tangent vector **T**.
  - c. Find the curvature  $\kappa$ .
  - d. Prove that the curve  ${\mathcal C}$  has a maximum curvature and find at which point it has this maximum curvature.
  - e. Show that the curve  $\mathcal{C}$  has no minimum curvature.

- f. Find the osculating circle at the point of maximum curvature.
- g. Show that  $\forall t > 0$  the position vector is never orthogonal to the tangent.
- IV. (15 Points) Consider  $\mathbf{r}(t) : I \to \mathbb{R}^3$  such that the curve of  $\mathbf{r}(t)$  is of torsion  $\tau \neq 0$ . We consider also that the curve lies on a sphere centered at the origin and of radius R and that it verifies |r'(t)| = 1. We call these curves *spherical curves*. We denote by  $\kappa$  its curvature,  $\tau$  its torsion,  $\mathbf{T}$  its unit tangent,  $\mathbf{N}$  its principal unit normal and  $\mathbf{B}$  its binormal.
  - a. Prove that  $|\mathbf{r}(t)|^2 = R^2$  and that  $\mathbf{r}(t) \perp \mathbf{T}$ .
  - b. Deduce that  $\mathbf{r} \cdot \mathbf{N} = -\frac{1}{\kappa}$ . Deduce that  $\exists a > 0$  such that  $\forall t \in I$  we have  $\kappa \ge a$  (that is  $\kappa$  has a minimum).

| Summer I | 2015 |
|----------|------|
|----------|------|

| Byblos                 |                               |
|------------------------|-------------------------------|
| Calculus IV<br>Test #2 | Date: July 02<br>Duration: 2h |
| Name:                  | ID:                           |

I. (20 Points) Consider the surface (S) of equation  $F(x, y, z) = \frac{x+y}{z} - e^{x^2-y^2} = 0$  and the point  $P_0(1, 1, 2)$ .

- a. Verify that  $P_0$  is on the surface (S).
- b. Find the equation of the plane (P), tangent on the surface at the point  $P_0$ .
- c. Find a parametric equation for the line (L), normal to the surface at the point  $P_0$ .
- II. (20 Points) Find the absolute maximum and minimum of the function  $f(x, y) = x^3 y^3 3xy$  over the domain  $D = \{(x, y), |x| \le 2, |y| \le 2\}$ .
- III. (15 Points) Let  $x \in \mathbb{R}$ . Study the function  $f(x, y) = e^x(x^2 + e^{2x}y^2)$  for local maxima, local minima and saddle points.
- IV. (20 Points) We are going to manufacture a rectangular box with equal length and width, no top, three dividers (see the figure below) and which has a fixed volume of 128  $cm^3$ . It has metal dividers, but cardboard sides. Metal costs  $\sqrt{2}$  times as expensive as cardboard. What are the dimensions that minimize the cost of the box?



# V. (10 Points) Find the following triple integrals

- a.  $\iiint_D (x+y)^2 \, dx \, dy \, dz \text{ where } D \text{ is the cylinder of equation } x^2 + y^2 = 1 \text{ with } 0 \le z \le 1,$
- b.  $\iiint_D \frac{e^z}{1+x+y+xy} \, dx \, dy \, dz \text{ where } D \text{ is the solid cube with } 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1.$

VI. (25 Points) Let  $\mathcal{P}$  be the paraboloid of equation  $z = 2 - x^2 - y^2$  and  $\mathcal{C}$  the cone of equation  $z = \sqrt{x^2 + y^2}$ .

- a. Prove that the intersection of  $\mathcal{P}$  and  $\mathcal{C}$  is a circle and find its radius and center.
- b. Let R be the ice cream limited from above by  $\mathcal{P}$  and from below by  $\mathcal{C}$ . Define R using rectangular, cylindrical and spherical coordinates.
- c. Find the volume of R.

| Byblos      |               |
|-------------|---------------|
| Calculus IV | Date: July-10 |
| Final Exam  | Duration: 2h  |
|             |               |

Name:

ID:

- I. (25 Points) Consider the curve C of equation  $\mathbf{r}(t) = \sin(3t)\mathbf{i} + \cos(t)\mathbf{j} + \cos(t)\mathbf{k}$  for t = 0 to  $t = \frac{\pi}{3}$ , and the vector field  $\mathcal{F} = \left(\frac{a}{yz} + ye^{xy}\right)\mathbf{i} + \left(xe^{xy} \frac{bx}{y^2z} \pi z\sin(\pi yz)\right)\mathbf{j} + \left(-\frac{x}{yz^2} \pi y\sin(\pi yz)\right)\mathbf{k}$  where a and b are real numbers.
  - a. Find a and b such that  $\mathcal{F}$  is conservative.
  - b. We consider a and b as found in a. . Find a potential function f for  $\mathcal{F}$ .
  - c. Deduce the flow of  $\mathcal{F}$  over the curve  $\mathcal{C}$ .
- II. (20 Points) Calculate the counterclockwise circulation of the vector field  $\mathcal{F} = -xy^3 \mathbf{i} + x^3 y \mathbf{j}$  around the closed curve C formed by the negative part of the circle  $x^2 + y^2 = 1$  and the line connecting the point (-1, 0) to the point (1, 0):
  - a. Using Green's theorem.
  - b. Directly using line integral.
- III. (35 Points) Let a > 0. Consider the paraboloid P of equation  $z = a^2(x^2 + y^2)$  and the plan Q of equation z = 1.
  - a. Prove that the volume of the solid enclosed by P from below and Q from above is equal to  $\frac{\pi}{2a^2}$ .
  - b. Find the volume of the solid S enclosed laterally by the paraboloids  $P_1$  of equation  $z = x^2 + y^2$  and  $P_2$  of equation  $z = 3(x^2 + y^2)$  and from above by the plan z = 1 using:
    - i. the result found in part a.
    - ii. triple integrals with spherical coordinates.
  - c. Prove, using surface integral that the area of the paraboloid P situated below the plan Q is equal to

$$\frac{\pi}{6a^4} \left( (4a^2 + 1)^{\frac{3}{2}} - 1 \right).$$

- d. We denote by D the boundary surface of the solid S defined in part b. . Find the outward flux of  $\mathcal{F} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$  across the boundary of D:
  - i. Using the divergence theorem.
  - ii. Directly using surface integral.

IV. (20 Points) Consider the paraboloid P of equation  $z = x^2 + y^2$  and the cone K of equation  $z = \sqrt{x^2 + y^2}$ .

- a. Prove that the intersection of P and K is a circle that we denote by C.
- b. Find the counterclockwise circulation of the vector field  $\mathcal{F} = y\mathbf{i} x\mathbf{j}$  around C when viewed from above using
  - a. Stokes' theorem in two different ways,
  - b. line integral.
- V. (10 Points) Prove, using surface integral, that the area of the lateral surface of the regular cone of revolution of height H and of circular basis of radius R is equal to

$$\pi R\sqrt{R^2 + H^2}.$$