Byblos

Calculus IV	Date: Apr/03/2012 Test \#1 Duration: 2 h
Name:	ID:

I. (30 Points) Let f be a function defined over $]-\pi, \pi[$ defined as

$$
f(x)=\left\{\begin{array}{ccc}
-\pi-x & \text { if } & -\pi<x \leq-\frac{\pi}{2} \\
x & \text { if } & -\frac{\pi}{2} \leq x<\frac{\pi}{2} \\
\pi-x & \text { if } & \frac{\pi}{2} \leq x<\pi
\end{array}\right.
$$

a. Sketch the graphic representation of f and show if f is even or odd.
b. Prove that the Fourier series of f is

$$
\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin \left(\frac{n \pi}{2}\right) \sin (n x)}{n^{2}}
$$

c. Deduce the values of the sums:

$$
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}, \quad \sum_{n=1}^{\infty} \frac{1}{n^{2}}, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}
$$

II. (30 Points) For $y \in \mathbb{R}$, consider the function $x=e^{-y^{2}}$.
a. Find a parametrization for f of the form $\mathbf{r}(t)=f(t) \mathbf{i}+t \mathbf{j}$ with $t \in \mathbb{R}$ and f being a function to be determined. (This parametrization is considered in the questions that follow).
b. Verify that \mathbf{r} is smooth and sketch its graphic representation.
c. Find the unit tangent vector \mathbf{T} at any point of $\mathbf{r}(t)$.
d. Prove that $\forall t \neq 0$ the principal unit normal \mathbf{N} is never parallel to the x-axis.
e. Find the curvature at any point of $\mathbf{r}(t)$.
f. Prove that the curvature is maximum at the point $P(1,0)$ and find the osculating circle at this point.
III. (40 Points) The hyperbola of equation $\frac{x^{2}}{4}-y^{2}=1$ has two branches. The first branch lies in the side $x \geq 0$ and the second in the side $x \leq 0$. We denote by \mathcal{H} the part that lies in the side $x \geq 0$.
a. Verify that a parametrization for \mathcal{H} can be

$$
\mathbf{r}(t)=2 \cosh (t) \mathbf{i}+\sinh (t) \mathbf{j}, \quad t \in \mathbb{R} .
$$

Show that \mathcal{H} is smooth and sketch its graphic representation. (The parametrization mentioned above is considered in the questions that follow).
b. Find the velocity vector $\mathbf{v}(t)$ and the unit tangent vector \mathbf{T}.
c. Find the curvature κ as a function of t.
d. Prove that κ is maximum at the points $(2,0)$.
e. Prove that κ does not have a minimum. Give a geometric interpretation of this result.
f. Find the osculating circle at the point $Q(2,0)$.
g. Generalize the result obtained in d. in order to find at which point of the whole hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, the curvature κ is maximum.
IV. (10 Points) Consider the planar curve given in polar coordinates by $\rho=\rho(\theta), a<\theta<b$. Show that the curvature is given by the formula

$$
\kappa(\theta)=\frac{\left|2\left(\rho^{\prime}\right)^{2}-\rho \rho^{\prime \prime}+\rho^{2}\right|}{\left[\rho^{2}+\left(\rho^{\prime}\right)^{2}\right]^{\frac{3}{2}}}, \quad \text { where } \rho^{\prime}=\frac{d \rho}{d \theta}, \text { and } \rho^{\prime \prime}=\frac{d^{2} \rho}{d \theta^{2}} .
$$

Byblos

Calculus IV
Test \#2

Name:

Date: May/14/2012
Duration: 2h
ID:
I. (15 Points) Consider the surface (S) of equation $F(x, y, z)=z-\cos \left(\frac{x y}{2 \pi}\right)=0$ and the point $P_{0}(\pi, \pi, 0)$.
a. Verify that P_{0} is on the surface (S).
b. Find the equation of the plane (P), tangent on the surface at the point P_{0}.
c. Find a parametric equation for the line (L), normal to the surface at the point P_{0}.
II. (15 Points) Consider the function $f(x, y)=\cos (x y)$.
a. Linearize $f(x, y)$ near the point $P\left(\frac{\pi}{2}, 1\right)$.
b. Find an upper bound for the magnitude of the error $E(x, y)$ over the rectangle

$$
R:\left|x-\frac{\pi}{2}\right|<0.1, \quad|y-1|<0.1
$$

III. (15 Points) Let (P) be the paraboloid of equation $z=x^{2}+y^{2}$ and (S) the sphere of equation $x^{2}+y^{2}+z^{2}=2$.
a. Prove that the intersection of (P) and (S) is the circle (C) of equation $x^{2}+y^{2}=1$ that lies in the plane $z=1$.
b. Let \mathcal{R} be the region enclosed by (S) from above, (P) from below and lying in the first octant. Find the bounds of the region \mathcal{R} using rectangular, cylindrical and spherical coordinates.
c. Find the volume of \mathcal{R}.
IV. (15 Points) Find the absolute maximum and minimum of the function $f(x, y)=-\frac{3}{2} x^{2}+x y+\frac{3}{2} y^{2}+x+3 y+4$ over the triangle enclosed by the lines $y=x, y=-x$ and $y=-2$.
V. (15 Points) Let $x>0$. Study the function $f(x, y)=x\left((\ln x)^{2}+y^{2}\right)$ for local maxima, local minima and saddle points.
VI. (15 Points) We are going to manufacture a rectangular box with equal length and width, no top, one diagonal divider (see the figure below) and which has a fixed volume of $9 \mathrm{~cm}^{3}$. It has metal divider, but cardboard sides. Metal costs $\sqrt{2}$ times as expensive as cardboard. For what dimensions x, and z is the cost minimized?

VII. (15 Points) Find the triple integral $\iiint_{D} x y z d x d y d z$ where D is the part of the sphere, centered at the origin and of radius 1 , that lies in the first octant.

Byblos

Calculus IV
Final Exam
Name:

Date: Jun/08/2012
Duration: 2h
ID:
I. (15 Points) Consider the vector field $\mathcal{F}=\left(-\sin (x+y)+2 x e^{y+z}\right) \mathbf{i}+\left(-\sin (x+y)+x^{2} e^{y+z}\right) \mathbf{j}+\left(x^{2} e^{y+z}\right) \mathbf{k}$.
a. Prove that \mathcal{F} is conservative.
b. Find a potential function f, for the field \mathcal{F}.
c. Find the flow of \mathcal{F} over the curve $\mathbf{r}(t)=\sin (t) \mathbf{i}+t \mathbf{j}+\sin (t) \mathbf{k}$ from $t=\pi$ to $t=2 \pi$.
II. (15 Points) Calculate the counterclockwise circulation of the vector field $\mathcal{F}=x y^{3} \mathbf{i}-y^{3} \mathbf{j}$ around the curve C which consists of the part of the parabola $y=x^{2}-1$ for $-1 \leq x \leq 1$ along with the positive semi-circle centered at the origin and joining $(-1,0)$ to $(1,0)$:
a. Using Green's theorem.
b. Directly using line integral.

III. (15 Points)

a. Find the volume of the solid enclosed by the paraboloid of equation $z=a^{2}-x^{2}-y^{2}$ from above and by the plane of equation $z=0$ from below.
b. We denote by D the region inside the paraboloid $z=5-x^{2}-y^{2}$ bounded below by the plane $z=1$ and above by the plane $z=4$. Find the outward flux of $\mathcal{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ across the boundary of D :
i. Using the divergence theorem.
ii. Directly using surface integral.
IV. (15 Points) Let (P) be the paraboloid of equation $x^{2}+y^{2}=2 z$, and the vector field $\mathcal{F}=x y \mathbf{i}+x z^{2} \mathbf{j}+x y^{2} \mathbf{k}$. Let C be the intersection of (P) with the plan of equation $z=2$.
Find the counterclockwise circulation of \mathcal{F} around the curve C when viewed from above:
(a) Directly using line integral.
(b) Using Stokes' theorem in two different ways.
V. (15 Points) Study the function $f(x, y)=\frac{x y}{\left(1+x^{2}\right)\left(1+y^{2}\right)}$ for local maxima, local minima and saddle points.
VI. (15 Points) We are going to manufacture a rectangular box in order to pack an iPhone with its accessories. Apple suggests a box that has $2 x$ as length, $2 y$ as a width, z as a height, no top, two dividers (see the figure below) and a fixed volume of $72 \mathrm{~cm}^{3}$. It has metal dividers, but cardboard sides. Metal costs 2 times as expensive as cardboard. For what dimensions Apple can minimize the cost of the box?
VII. (15 Points) Find the triple integral $\iiint_{D} \frac{d x d y d z}{\sqrt{x^{2}+y^{2}+z^{2}}}$,
where D is the domain limited by the two spheres

$$
x^{2}+y^{2}+z^{2}=1 \text { and } x^{2}+y^{2}+z^{2}=4
$$

Byblos

Calculus IV	Date: Apr $/ 03 / 2013$
Test \#1	Duration: 2 h
Name:	ID:

I. (10 Points) Short questions
a. Consider the curve \mathcal{C} given by the vector function $\mathbf{r}(t)=\cos (t) \mathbf{i}+\sin (t) \mathbf{j}+\sin (t) \mathbf{k}$. Prove that \mathcal{C} lies on four surfaces in the space and find their equations and types.
b. Consider the smooth curve \mathcal{C} given by the polar equation $\rho=\rho(\theta)$.

Prove that the arc length of the curve \mathcal{C} between θ_{1} and θ_{2} (where $\theta_{1}<\theta_{2}$) is given by the formula

$$
L=\int_{\theta_{1}}^{\theta_{2}} \sqrt{\left(\rho^{\prime}(\theta)\right)^{2}+(\rho(\theta))^{2}} d \theta
$$

II. (35 Points) Let f be a function defined over $]-\pi, \pi[$ as

$$
f(x)=\left\{\begin{array}{ccc}
-x-\frac{\pi}{2} & \text { if } & -\pi<x<-\frac{\pi}{2} \\
x+\frac{\pi}{2} & \text { if } & -\frac{\pi}{2}<x<0 \\
-x+\frac{\pi}{2} & \text { if } & 0<x<\frac{\pi}{2} \\
x-\frac{\pi}{2} & \text { if } & \frac{\pi}{2}<x<\pi
\end{array}\right.
$$

a. Sketch the graphic representation of f.
b. Prove that the Fourier series of f is

$$
\frac{\pi}{4}+\frac{2}{\pi} \sum_{n=1}^{\infty}\left(\frac{1+(-1)^{n}-2 \cos \left(\frac{n \pi}{2}\right)}{n^{2}}\right) \cos (n x)
$$

c. Prove that the Fourier series can be simplified to

$$
\frac{\pi}{4}+\frac{2}{\pi} \sum_{n=0}^{\infty} \frac{\cos (2(2 n+1) x)}{(2 n+1)^{2}}
$$

d. Deduce the values of

$$
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}, \quad \sum_{n=1}^{\infty} \frac{1}{n^{2}}, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}
$$

III. (25 Points) Consider the vector function given by $\mathbf{r}(t)=(a \cos (t)+\sin t) \mathbf{i}+(\cos (t)-a \sin (t)) \mathbf{j}$ and $\mathcal{C}, t \in \mathbb{R}$ its representative curve.
a. Find the velocity $\mathbf{v}(t)$, the speed $|\mathbf{v}(t)|$ and prove that \mathcal{C} is smooth.
b. Find the tangent \mathbf{T}.
c. Find the curvature κ and deduce the type of \mathcal{C}.
d. Find the normal vector \mathbf{N} without using $\frac{d \mathbf{T}}{d t}$.
e. Prove that \mathbf{r} can be parameterized as $\mathbf{r}(\tau)=\alpha \cos (\tau) \mathbf{i}+\alpha \sin (\tau) \mathbf{j}$ where τ is a parameter to express in function of t and α a constant to be expressed in function of a.
IV. (40 Points) Consider the curve \mathcal{C} given by its polar equation $\rho=e^{-k \theta}$, where $k>0$ and $\theta \in \mathbb{R}$. This curve is called the logarithmic spirale.
a. Find a parametrization for \mathcal{C} of the form $\mathbf{r}(\theta)=x(\theta) \mathbf{i}+y(\theta) \mathbf{j}$.
b. Find the velocity $\mathbf{v}(\theta)$ and the speed $|\mathbf{v}(\theta)|$ then deduce the smoothness of \mathcal{C}.
c. Find the tangent vector \mathbf{T} and the principal unit normal \mathbf{N}.
d. Find the curvature κ.
e. Prove that the curve \mathcal{C} has neither maximum nor minimum curvature.
f. Prove that, $\forall t$, the angle between the position vector and the tangent vector is constant.
g. Now consider the case where $k=1$ and $\theta \in[0,+\infty)$
i. Find the osculating circle at $\theta=\pi$.
ii. Find the length of the whole curve.

Byblos

Calculus IV
Test \#2

Name:

Date: May/09/2013
Duration: 2h
ID:
I. (15 Points) Consider the surface (S) of equation $F(x, y, z)=\cos \left(\frac{x y}{6 z}\right)-\frac{\sqrt{3}}{2}=0$ and the point $P_{0}(\pi, \pi, \pi)$.
a. Verify that P_{0} is on the surface (S).
b. Find the equation of the plane (P), tangent on the surface at the point P_{0}.
c. Find a parametric equation for the line (L), normal to the surface at the point P_{0}.
II. (15 Points) Consider the function $f(x, y)=\cos (x y)+\sin (x y)$.
a. Linearize $f(x, y)$ near the point $P\left(\frac{\pi}{2}, 1\right)$.
b. Find an upper bound for the magnitude of the error $E(x, y)$ over the rectangle

$$
R:\left|x-\frac{\pi}{2}\right|<0.1,|y-1|<0.1
$$

III. (20 Points) Let (S) be the sphere of equation $x^{2}+y^{2}+z^{2}=R^{2}$. Consider the planes $\left(P_{1}\right): z=R / 2$ and $\left(P_{2}\right): z=-R / 2$.
Let \mathcal{R} be the region enclosed by (S) laterally, $\left(P_{1}\right)$ from above and $\left(P_{2}\right)$ from below. Find the volume of \mathcal{R} using cylindrical and spherical coordinates.
IV. (15 Points) Find the absolute maximum and minimum of the function $f(x, y)=x^{3}+y^{3}+3 x y$ over the domain $D=\{(x, y),|x|<2,|y|<2\}$.
V. (15 Points) Let $x>0$. Study the function $f(x, y)=x^{2}\left((\ln x)^{2}+x^{2} y^{2}\right)$ for local maxima, local minima and saddle points.
VI. (20 Points) We are going to manufacture a rectangular box with equal length and width, no top, two dividers (see the figure below) and which has a fixed volume of $98 \mathrm{~cm}^{3}$. It has metal dividers, but cardboard sides. Metal costs $\sqrt{2}$ times as expensive as cardboard. What are the dimensions that minimize the cost of the box?

VII. (10 Points) Find the domain D such that the triple integral $\iiint_{D}\left(1-2 x^{2}-y^{2}-z^{2}\right) d x d y d z$ is maximum.

Byblos

Calculus IV
Final Exam

Name:

Date: Jun/01/2013
Duration: 2h
ID:
I. (20 Points) Consider the vector field $\mathcal{F}=\left(2 x y z^{2}-y \sin (x y)\right) \mathbf{i}+\left(x^{2} z^{2}-x \sin (x y)\right) \mathbf{j}+\left(2 x^{2} y z+e^{z}\right) \mathbf{k}$.
a. Prove that \mathcal{F} is conservative.
b. Find a potential function f, for the field \mathcal{F}.
c. Find the flow of \mathcal{F} over the curve $\mathbf{r}(t)=\sin (t) \mathbf{i}+\cos (t) \mathbf{j}+\sin (t) \mathbf{k}$ from $t=0$ to $t=\frac{\pi}{2}$.
II. (20 Points) Calculate the counterclockwise circulation of the vector field $\mathcal{F}=x y^{3} \mathbf{i}-y^{3} \mathbf{j}$ around the curve C which consists of the part of the parabola $y=1-x^{2}$ for $-1 \leq x \leq 1$ along with the line connecting $(-1,0)$ to $(0,-1)$ and the line connecting $(0,-1)$ to $(1,0)$:
a. Using Green's theorem.
b. Directly using line integral.

III. (30 Points)

a. Prove that the volume of the solid enclosed by the cone of equation $z=\sqrt{\frac{x^{2}+y^{2}}{3}}$ from below and by the sphere of equation $x^{2}+y^{2}+z^{2}=R^{2}$ from above is equal to $\frac{\pi}{3} R^{3}$.
b. Prove, using the surface integral that the area of the cap of the sphere $x^{2}+y^{2}+z^{2}=R^{2}$ cut by the plane $z=\frac{R}{2}$ is equal to πR^{2}.
c. We denote by D the region inside the cone $z=\sqrt{\frac{x^{2}+y^{2}}{3}}$ bounded below by the sphere $x^{2}+y^{2}+z^{2}=1$ and above by the sphere $x^{2}+y^{2}+z^{2}=16$. Find the outward flux of $\mathcal{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ across the boundary of D :
i. Using the divergence theorem.
ii. Directly using surface integral.
IV. (15 Points) Let C be the curve intersection of the plane $y+z=2$ and the cylinder $x^{2}+y^{2}=4$. Find the counterclockwise circulation of the vector field $\mathcal{F}=y \mathbf{i}+x^{2} \mathbf{j}+x z \mathbf{k}$ around the curve C when viewed from above, using Stokes' theorem or directly using a line integral.
V. (20 Points) We are going to manufacture a cylindrical box in order to pack a soft chocolate with biscuits. The manufacturer suggests a box that has R as radius, H as height with top, one divider (see the figure below) and a fixed volume of $27 \pi \mathrm{~cm}^{3}$. It has cardboard divider, but plastic sides. Cardboard costs π times as expensive as plastic. For what dimensions can the manufacturer minimize the cost of the box?
VI. (10 Points) Consider $a>0, b>0$ and $c>0$.

Prove that the volume of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ is equal to $\frac{4}{3} \pi a b c$.

Byblos

Calculus IV	Date: Apr/07/2014
Test \#1	Duration: 2 h
Name:	ID:

I. (15 Points) Short questions
a. What is the difference between the vector functions $r_{1}(t)=t \mathbf{i}+t^{2} \mathbf{j}$ and $r_{2}(t)=t^{3} \mathbf{i}+t^{6} \mathbf{j}$.
b. Consider the curve \mathcal{C} given by the vector function $\mathbf{r}(t)=\cos (t) \mathbf{i}+\sin (t) \mathbf{k}$.

Prove that \mathcal{C} lies, at least, on three surfaces in the space by giving their equations and types.
c. Suggest a parametrisation for a curve that has a non-zero constant curvature and a torsion equal to zero.
II. (35 Points) Let f be a function defined over $]-\pi, \pi[$ as

$$
f(x)=\left\{\begin{array}{ccc}
(x+\pi)^{2} & \text { if } & -\pi<x<-\frac{\pi}{2}, \\
\frac{\pi^{2}}{4} & \text { if } & -\frac{\pi}{2}<x<\frac{\pi}{2}, \\
(x-\pi)^{2} & \text { if } & \frac{\pi}{2}<x<\pi .
\end{array}\right.
$$

a. Sketch the graphic representation of f and show if it's even or odd.
b. Prove that the Fourier series of f is

$$
\frac{\pi^{2}}{6}+\sum_{n=1}^{\infty}\left(\frac{2}{n^{2}} \cos \left(\frac{n \pi}{2}\right)+\frac{4}{\pi n^{3}} \sin \left(\frac{n \pi}{2}\right)\right) \cos (n x)
$$

c. Prove that the Fourier series can be simplified to

$$
\frac{\pi^{2}}{6}+\frac{4}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{3}} \cos ((2 n+1) x)+\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos ((2 n x))
$$

d. Deduce the values of

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}, \quad \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{3}}, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}
$$

III. (40 Points) Consider the curve \mathcal{C} given by $\mathbf{r}(\theta)=a \theta \cos (\theta) \mathbf{i}+a \theta \sin (\theta) \mathbf{j}$, where $a>0$ and $\theta \in \mathbb{R}$. This curve is called the archimedian spirale.
a. Find the velocity $\mathbf{v}(\theta)$ and the speed $|\mathbf{v}(\theta)|$ then deduce the smoothness of \mathcal{C}.
b. Find the tangent vector \mathbf{T}.
c. Find the curvature κ.
d. Prove that the curve \mathcal{C} has a maximum curvature and find at which point it has this maximum curvature.
e. Show that the curve \mathcal{C} has no minimum curvature.
f. Find the principal unit normal \mathbf{N}.
g. Find the osculating circle at the point of maximum curvature.
h. Show that $\forall \theta>0$ the position vector is never orthogonal to the tangent.
IV. (20 Points) Consider $\mathbf{r}(t): I \rightarrow \mathbb{R}^{3}$ such that the curve of $\mathbf{r}(t)$ is of torsion $\tau \neq 0$. We consider also that the curve lies on a sphere centered at the origin and of radius R and that it verifies $\left|r^{\prime}(t)\right|=1$. We call these curves spherical curves. We denote by κ its curvature, τ its torsion, \mathbf{T} its unit tangent, \mathbf{N} its principal unit normal and \mathbf{B} its binormal.
a. Prove that $|\mathbf{r}(t)|^{2}=R^{2}$ and that $\mathbf{r}(t) \perp \mathbf{T}$.
b. Deduce that $\mathbf{r} \cdot \mathbf{N}=-\frac{1}{\kappa}$. Deduce that $\exists a>0$ such that $\forall t \in I$ we have $\kappa \geq a$.
c. Prove that $\mathbf{r} \cdot \mathbf{B}=\frac{\kappa^{\prime}}{\kappa^{2} \tau}$.
d. Deduce that the spherical curves verifies the relation

$$
\left(\frac{1}{\kappa}\right)^{2}+\left(\frac{\kappa^{\prime}}{\kappa^{2} \tau}\right)^{2}=R^{2}
$$

Byblos

Calculus IV
Test \#2

Name:

Date: May/12
Duration: 2 h
ID:
I. (15 Points) Consider the surface (S) of equation $F(x, y, z)=\sin \left(\frac{\pi x}{2 z}\right)-e^{x^{2}-y^{2}}=0$ and the point $P_{0}(1,1,1)$.
a. Verify that P_{0} is on the surface (S).
b. Find the equation of the plane (P), tangent on the surface at the point P_{0}.
c. Find a parametric equation for the line (L), normal to the surface at the point P_{0}.
II. (15 Points) Consider the function $f(x, y)=x \cos \left(\frac{\pi}{2} y\right)+y \cos \left(\frac{\pi}{2} x\right)$.
a. Linearize $f(x, y)$ near the point $P\left(\frac{2}{3}, \frac{2}{3}\right)$.
b. Find an upper bound for the magnitude of the error $E(x, y)$ over the rectangle

$$
R:\left|x-\frac{2}{3}\right|<0.1,\left|y-\frac{2}{3}\right|<0.1
$$

III. (25 Points) Let \mathcal{P} be the paraboloid of equation $z=2-x^{2}-y^{2}$ and \mathcal{C} the cone of equation $z=\sqrt{x^{2}+y^{2}}$.
a. Prove that the intersection of \mathcal{P} and \mathcal{C} is a circle and find its radius and center.
b. Let R be the ice cream limited from above by \mathcal{P} and from below by \mathcal{C}. Define R in the rectangular, cylindrical and spherical systems of coordinates.
c. Find the volume of R using the cylindrical coordinates.
IV. (15 Points) Find the absolute maximum and minimum of the function $f(x, y)=x^{3}-y^{3}-3 x y$ over the domain $D=\{(x, y),|x| \leq 2,|y| \leq 2\}$.
V. (20 Points) Let $x>0$. Study the function $f(x, y)=x^{3}\left((\ln x)^{2}+2 x^{2} y^{2}\right)$ for local maxima, local minima and saddle points.
VI. (20 Points) We are going to manufacture a rectangular box with equal length and width, no top, three dividers (see the figure below) and which has a fixed volume of $128 \mathrm{~cm}^{3}$. It has metal dividers, but cardboard sides. Metal costs $\sqrt{2}$ times as expensive as cardboard. What are the dimensions that minimize the cost of the box?

Byblos

Calculus IV
Final Exam

Name:

Date: Jun-02
Duration: 2 h
ID:
I. (15 Points) Consider the curve \mathcal{C} of equation $\mathbf{r}(t)=\sin (3 t) \mathbf{i}+\cos (t) \mathbf{j}+\cos (t) \mathbf{k}$ for $t=0$ to $t=\frac{\pi}{3}$, and the vector field $\mathcal{F}=\left(\frac{1}{y z}+y e^{x y}\right) \mathbf{i}+\left(x e^{x y}-\frac{x}{y^{2} z}-\pi z \sin (\pi y z)\right) \mathbf{j}-\left(\frac{x}{y z^{2}}+\pi y \sin (\pi y z)\right) \mathbf{k}$.
Find the flow of \mathcal{F} over the curve \mathcal{C}.
II. (15 Points) Calculate the counterclockwise circulation of the vector field $\mathcal{F}=x y^{3} \mathbf{i}-x^{3} y \mathbf{j}$ around the closed curve \mathcal{C} formed by the parabolas $y=1-x^{2}$ and $y=2-2 x^{2}$:
a. Using Green's theorem.
b. Directly using line integral.
III. (35 Points) Let $a>0$. Consider the paraboloid P of equation $z=a^{2}\left(x^{2}+y^{2}\right)$ and the plan Q of equation $z=1$.
a. Prove that the volume of the solid enclosed by P from below and Q from above is equal to $\frac{\pi}{2 a^{2}}$.
b. Find the volume of the solid S enclosed laterally by the paraboloids P_{1} of equation $z=x^{2}+y^{2}$ and P_{2} of equation $z=3\left(x^{2}+y^{2}\right)$ and from above by the plan $z=1$ using:
i. the result found in a.,
ii. triple integrals with cylindrical coordinates,
iii. triple integrals with spherical coordinates.
c. Prove, using the surface integral that the area of the paraboloid P situated below the plan Q is equal to

$$
\frac{\pi}{6 a^{4}}\left(\left(4 a^{2}+1\right)^{\frac{3}{2}}-1\right)
$$

d. We denote by D the boundary of the solid S defined in \mathbf{b}. Find the outward flux of $\mathcal{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ across the boundary of D :
i. Using the divergence theorem.
ii. Directly using surface integral.
IV. (20 Points) Consider the paraboloid P of equation $z=x^{2}+y^{2}$ and the cone K of equation $z=\sqrt{x^{2}+y^{2}}$.
a. Prove that, for $z>0$, the intersection of P and K is a circle (denoted by C) and determine its center and radius.
b. Find the counterclockwise circulation of the vector field $\mathcal{F}=y \mathbf{i}-x \mathbf{j}$ around C when viewed from above using
i. Stokes' theorem in three different ways.
ii. line integral.
V. (15 Points) Study the function $f(x, y)=x y \ln (x) \ln (y)$ for local maxima, local minima and saddle points.
VI. (10 Points) Prove that the area of the lateral surface of the regular cone of revolution of height H and of circular basis of radius R is equal to

$$
\pi R \sqrt{R^{2}+H^{2}}
$$

Byblos

Calculus IV	Date: Mar/17/2015
Test $\# 1$	Duration: 2 h
Name:	ID:

I. (25 Points) Short questions
a. What is the difference between the vector functions $r_{1}(t)=t \mathbf{i}+t^{2} \mathbf{j}$ and $r_{2}(t)=t^{3} \mathbf{i}+t^{6} \mathbf{j}$.
b. Consider the curve \mathcal{C} given by the vector function $\mathbf{r}(t)=\cos (2 t) \mathbf{i}+\cos (t) \mathbf{j}+\sin (t) \mathbf{k}$. Prove that \mathcal{C} lies, at least, on four quadratic surfaces in the space by giving their equations and types.
c. Suggest a parametrisation for a curve that has a non-zero constant curvature and a torsion equal to zero.
d. Find the equation of the osculating circle of the curve given by $y=x^{3}-3 x$ at the point $P(1,-2)$.
e. Find the torsion of the curve given by

$$
\mathbf{r}(t)=\left(e^{t} \sin t-e^{2 t} \cos t\right) \mathbf{i}+\left(2 e^{t} \sin t+e^{2 t} \cos t\right) \mathbf{j}+\left(e^{t} \sin t-5 e^{2 t} \cos t\right) \mathbf{k}
$$

II. (30 Points) Let f be a function defined over $]-\pi, \pi[$ as

$$
f(x)=\left\{\begin{array}{ccc}
(x+\pi)^{2} & \text { if } & -\pi<x<-\frac{\pi}{2}, \\
\frac{\pi^{2}}{4} & \text { if } & -\frac{\pi}{2}<x<\frac{\pi}{2}, \\
(x-\pi)^{2} & \text { if } & \frac{\pi}{2}<x<\pi .
\end{array}\right.
$$

a. Sketch the graphic representation of f and show if it's even or odd.
b. Prove that the Fourier series of f is

$$
\frac{\pi^{2}}{6}+\sum_{n=1}^{\infty}\left(\frac{2}{n^{2}} \cos \left(\frac{n \pi}{2}\right)+\frac{4}{\pi n^{3}} \sin \left(\frac{n \pi}{2}\right)\right) \cos (n x)
$$

c. Prove that the Fourier series can be simplified to

$$
\frac{\pi^{2}}{6}+\frac{4}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{3}} \cos ((2 n+1) x)+\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos ((2 n x))
$$

d. Deduce the values of

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{3}}, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}
$$

III. (40 Points) Consider the curve \mathcal{C} given by $\mathbf{r}(t)=a t \cos (t) \mathbf{i}+a t \sin (t) \mathbf{j}$, where $a>0$ and $t \in \mathbb{R}$. This curve is called the archimedian spirale.
a. Find the velocity $\mathbf{v}(t)$ and the speed $|\mathbf{v}(t)|$ then deduce the smoothness of \mathcal{C}.
b. Find the unit tangent vector T.
c. Find the curvature κ.
d. Prove that the curve \mathcal{C} has a maximum curvature and find at which point it has this maximum curvature.
e. Show that the curve \mathcal{C} has no minimum curvature.
f. Find the principal unit normal N .
g. Find the osculating circle at the point of maximum curvature.
h. Show that $\forall t>0$ the position vector is never orthogonal to the tangent.
IV. (15 Points) Consider $\mathbf{r}(t): I \rightarrow \mathbb{R}^{3}$ such that the curve of $\mathbf{r}(t)$ is of torsion $\tau \neq 0$. We consider also that the curve lies on a sphere centered at the origin and of radius R and that it verifies $\left|r^{\prime}(t)\right|=1$. We call these curves spherical curves. We denote by κ its curvature, τ its torsion, \mathbf{T} its unit tangent, \mathbf{N} its principal unit normal and \mathbf{B} its binormal.
a. Prove that $|\mathbf{r}(t)|^{2}=R^{2}$ and that $\mathbf{r}(t) \perp \mathbf{T}$.
b. Deduce that $\mathbf{r} \cdot \mathbf{N}=-\frac{1}{\kappa}$.

Deduce that $\exists a>0$ such that $\forall t \in I$ we have $\kappa \geq a$ (that is κ has a minimum).

Byblos

Calculus IV
Test \#2
Name:

Date: April 21
Duration: 2h

ID:
I. (20 Points) Consider the surface (S) of equation $F(x, y, z)=\frac{x+y}{z}-e^{x^{2}-y^{2}}=0$ and the point $P_{0}(1,1,2)$.
a. Verify that P_{0} is on the surface (S).
b. Find the equation of the plane (P), tangent on the surface at the point P_{0}.
c. Find a parametric equation for the line (L), normal to the surface at the point P_{0}.
II. (20 Points) Find the absolute maximum and minimum of the function $f(x, y)=x^{3}-y^{3}-3 x y$ over the domain $D=\{(x, y),|x| \leq 2,|y| \leq 2\}$.
III. (20 Points) Let $x \in \mathbb{R}$. Study the function $f(x, y)=e^{x}\left(x^{2}+e^{2 x} y^{2}\right)$ for local maxima, local minima and saddle points.
IV. (20 Points) We are going to manufacture a rectangular box with equal length and width, no top, three dividers (see the figure below) and which has a fixed volume of $128 \mathrm{~cm}^{3}$. It has metal dividers, but cardboard sides. Metal costs $\sqrt{2}$ times as expensive as cardboard. What are the dimensions that minimize the cost of the box?

V. (10 Points) Find the following triple integrals
a. $\iiint_{D}(x+y)^{2} d x d y d z$ where D is the cylinder of equation $x^{2}+y^{2}=1$ with $0 \leq z \leq 1$,
b. $\iiint_{D} \frac{e^{z}}{1+x+y+x y} d x d y d z$ where D is the solid cube with $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$.
VI. (20 Points) Let \mathcal{P} be the paraboloid of equation $z=2-x^{2}-y^{2}$ and \mathcal{C} the cone of equation $z=\sqrt{x^{2}+y^{2}}$.
a. Prove that the intersection of \mathcal{P} and \mathcal{C} is a circle and find its radius and center.
b. Let R be the ice cream limited from above by \mathcal{P} and from below by \mathcal{C}. Define R in the rectangular and cylindrical systems of coordinates.
c. Find the volume of R.

Byblos

Calculus IV
Final Exam

Name:

Date: May-15
Duration: 2 h
ID:
I. (25 Points) Consider the curve \mathcal{C} of equation $\mathbf{r}(t)=\sin (3 t) \mathbf{i}+\cos (t) \mathbf{j}+\cos (t) \mathbf{k}$ for $t=0$ to $t=\frac{\pi}{3}$, and the vector field $\mathcal{F}=\left(\frac{a}{y z}+y e^{x y}\right) \mathbf{i}+\left(x e^{x y}-\frac{b x}{y^{2} z}-\pi z \sin (\pi y z)\right) \mathbf{j}+\left(-\frac{x}{y z^{2}}-\pi y \sin (\pi y z)\right) \mathbf{k}$ where a and b are real numbers.
a. Find a and b such that \mathcal{F} is conservative.
b. We consider a and b as found in a. . Find a potential function f for \mathcal{F}.
c. Deduce the flow of \mathcal{F} over the curve \mathcal{C}.
II. (20 Points) Calculate the counterclockwise circulation of the vector field $\mathcal{F}=-x y^{3} \mathbf{i}+x^{3} y \mathbf{j}$ around the closed curve \mathcal{C} formed by the positive part of the circle of equation $x^{2}+y^{2}=1$ and the line connecting the point $(-1,0)$ to the point $(1,0)$:
a. Using Green's theorem.
b. Directly using line integral.
III. (35 Points) Let $a>0$. Consider the paraboloid P of equation $z=a^{2}\left(x^{2}+y^{2}\right)$ and the plan Q of equation $z=1$.
a. Prove that the volume of the solid enclosed by P from below and Q from above is equal to $\frac{\pi}{2 a^{2}}$.
b. Find the volume of the solid S enclosed laterally by the paraboloids P_{1} of equation $z=x^{2}+y^{2}$ and P_{2} of equation $z=3\left(x^{2}+y^{2}\right)$ and from above by the plan $z=1$ using:
i. the result found in part a.
ii. triple integrals with spherical coordinates.
c. Prove, using the surface integral that the area of the paraboloid P situated below the plan Q is equal to

$$
\frac{\pi}{6 a^{4}}\left(\left(4 a^{2}+1\right)^{\frac{3}{2}}-1\right)
$$

d. We denote by D the boundary surface of the solid S defined in part b. . Find the outward flux of $\mathcal{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ across the boundary of D :
i. Using the divergence theorem.
ii. Directly using surface integral.
IV. (20 Points) Consider the paraboloid P of equation $z=x^{2}+y^{2}$ and the cone K of equation $z=\sqrt{x^{2}+y^{2}}$.
a. Prove that the intersection of P and K is a circle that we denote by C.
b. Find the counterclockwise circulation of the vector field $\mathcal{F}=y \mathbf{i}-x \mathbf{j}$ around C when viewed from above using
a. Stokes' theorem in two different ways,
b. line integral.
V. (10 Points) Prove, using surface integral, that the area of the lateral surface of the regular cone of revolution of height H and of circular basis of radius R is equal to

$$
\pi R \sqrt{R^{2}+H^{2}}
$$

Byblos
\(\left.$$
\begin{array}{ll}\text { Calculus IV } & \begin{array}{l}\text { Date: Jun/16/2015 } \\
\text { Test } \# 1\end{array}
$$

Duration: 2h\end{array}\right]\)| Name: |
| :--- |

I. (35 Points) Short questions
a. Compare the two vector functions $r_{1}(t)=t \mathbf{i}+t^{2} \mathbf{j}$ and $r_{2}(t)=t^{3} \mathbf{i}+t^{6} \mathbf{j}$.
b. Consider the curve \mathcal{C} given by the vector function $\mathbf{r}(t)=\cos (2 t) \mathbf{i}+\cos (t) \mathbf{j}+\sin (t) \mathbf{k}$.

Prove that \mathcal{C} lies, at least, on four quadratic surfaces in the space by giving their equations and types.
c. Suggest a parametrisation for a curve that has a non-zero constant curvature and a torsion equal to zero.
d. Find the equation of the osculating circle of the curve given by $y=x^{3}-3 x$ at the point $P(1,-2)$.
e. Find the torsion of the curve given by

$$
\mathbf{r}(t)=\left(e^{t} \sin t-e^{2 t} \cos t\right) \mathbf{i}+\left(2 e^{t} \sin t+e^{2 t} \cos t\right) \mathbf{j}+\left(e^{t} \sin t-5 e^{2 t} \cos t\right) \mathbf{k}
$$

II. (25 Points) Let f be a function defined over $]-\pi, \pi[$ as

$$
f(x)=\left\{\begin{array}{ccc}
-x-\pi / 2 & \text { if } & -\pi<x<-\frac{\pi}{2} \\
1 & \text { if } & -\frac{\pi}{2}<x<\frac{\pi}{2} \\
x-\pi / 2 & \text { if } & \frac{\pi}{2}<x<\pi
\end{array}\right.
$$

a. Sketch the graphic representation of f.
b. Prove that the Fourier series of f is

$$
\frac{1}{2}+\frac{\pi}{8}+\frac{2}{\pi} \sum_{n=1}^{\infty}\left(\frac{\sin \left(\frac{n \pi}{2}\right)}{n}+\frac{(-1)^{n}-\cos \left(\frac{n \pi}{2}\right)}{n^{2}}\right) \cos (n x)
$$

c. Deduce the values of the following sums

$$
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}
$$

III. (35 Points) Consider the curve \mathcal{C} given by $\mathbf{r}(t)=a t \cos (t) \mathbf{i}+a t \sin (t) \mathbf{j}$, where $a>0$ and $t \in \mathbb{R}$. This curve is called the archimedian spirale.
a. Find the velocity $\mathbf{v}(t)$ and the speed $|\mathbf{v}(t)|$ then deduce the smoothness of \mathcal{C}.
b. Find the unit tangent vector T.
c. Find the curvature κ.
d. Prove that the curve \mathcal{C} has a maximum curvature and find at which point it has this maximum curvature.
e. Show that the curve \mathcal{C} has no minimum curvature.
f. Find the osculating circle at the point of maximum curvature.
g. Show that $\forall t>0$ the position vector is never orthogonal to the tangent.
IV. (15 Points) Consider $\mathbf{r}(t): I \rightarrow \mathbb{R}^{3}$ such that the curve of $\mathbf{r}(t)$ is of torsion $\tau \neq 0$. We consider also that the curve lies on a sphere centered at the origin and of radius R and that it verifies $\left|r^{\prime}(t)\right|=1$. We call these curves spherical curves. We denote by κ its curvature, τ its torsion, \mathbf{T} its unit tangent, \mathbf{N} its principal unit normal and \mathbf{B} its binormal.
a. Prove that $|\mathbf{r}(t)|^{2}=R^{2}$ and that $\mathbf{r}(t) \perp \mathbf{T}$.
b. Deduce that $\mathbf{r} \cdot \mathbf{N}=-\frac{1}{\kappa}$.

Deduce that $\exists a>0$ such that $\forall t \in I$ we have $\kappa \geq a$ (that is κ has a minimum).

Byblos

Calculus IV	Date: July 02
Test $\# 2$	Duration: 2 h
Name:	ID:

I. (20 Points) Consider the surface (S) of equation $F(x, y, z)=\frac{x+y}{z}-e^{x^{2}-y^{2}}=0$ and the point $P_{0}(1,1,2)$.
a. Verify that P_{0} is on the surface (S).
b. Find the equation of the plane (P), tangent on the surface at the point P_{0}.
c. Find a parametric equation for the line (L), normal to the surface at the point P_{0}.
II. (20 Points) Find the absolute maximum and minimum of the function $f(x, y)=x^{3}-y^{3}-3 x y$ over the domain $D=\{(x, y),|x| \leq 2,|y| \leq 2\}$.
III. (15 Points) Let $x \in \mathbb{R}$. Study the function $f(x, y)=e^{x}\left(x^{2}+e^{2 x} y^{2}\right)$ for local maxima, local minima and saddle points.
IV. (20 Points) We are going to manufacture a rectangular box with equal length and width, no top, three dividers (see the figure below) and which has a fixed volume of $128 \mathrm{~cm}^{3}$. It has metal dividers, but cardboard sides. Metal costs $\sqrt{2}$ times as expensive as cardboard. What are the dimensions that minimize the cost of the box?

V. (10 Points) Find the following triple integrals
a. $\iiint_{D}(x+y)^{2} d x d y d z$ where D is the cylinder of equation $x^{2}+y^{2}=1$ with $0 \leq z \leq 1$,
b. $\iiint_{D} \frac{e^{z}}{1+x+y+x y} d x d y d z$ where D is the solid cube with $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$.
VI. (25 Points) Let \mathcal{P} be the paraboloid of equation $z=2-x^{2}-y^{2}$ and \mathcal{C} the cone of equation $z=\sqrt{x^{2}+y^{2}}$.
a. Prove that the intersection of \mathcal{P} and \mathcal{C} is a circle and find its radius and center.
b. Let R be the ice cream limited from above by \mathcal{P} and from below by \mathcal{C}. Define R using rectangular, cylindrical and spherical coordinates.
c. Find the volume of R.

Byblos

Calculus IV
Date: July-10
Final Exam
Name:

Duration: 2h
ID:
I. (25 Points) Consider the curve \mathcal{C} of equation $\mathbf{r}(t)=\sin (3 t) \mathbf{i}+\cos (t) \mathbf{j}+\cos (t) \mathbf{k}$ for $t=0$ to $t=\frac{\pi}{3}$, and the vector field $\mathcal{F}=\left(\frac{a}{y z}+y e^{x y}\right) \mathbf{i}+\left(x e^{x y}-\frac{b x}{y^{2} z}-\pi z \sin (\pi y z)\right) \mathbf{j}+\left(-\frac{x}{y z^{2}}-\pi y \sin (\pi y z)\right) \mathbf{k}$ where a and b are real numbers.
a. Find a and b such that \mathcal{F} is conservative.
b. We consider a and b as found in a. . Find a potential function f for \mathcal{F}.
c. Deduce the flow of \mathcal{F} over the curve \mathcal{C}.
II. (20 Points) Calculate the counterclockwise circulation of the vector field $\mathcal{F}=-x y^{3} \mathbf{i}+x^{3} y \mathbf{j}$ around the closed curve \mathcal{C} formed by the negative part of the circle $x^{2}+y^{2}=1$ and the line connecting the point $(-1,0)$ to the point $(1,0)$:
a. Using Green's theorem.
b. Directly using line integral.
III. (35 Points) Let $a>0$. Consider the paraboloid P of equation $z=a^{2}\left(x^{2}+y^{2}\right)$ and the plan Q of equation $z=1$.
a. Prove that the volume of the solid enclosed by P from below and Q from above is equal to $\frac{\pi}{2 a^{2}}$.
b. Find the volume of the solid S enclosed laterally by the paraboloids P_{1} of equation $z=x^{2}+y^{2}$ and P_{2} of equation $z=3\left(x^{2}+y^{2}\right)$ and from above by the plan $z=1$ using:
i. the result found in part a.
ii. triple integrals with spherical coordinates.
c. Prove, using surface integral that the area of the paraboloid P situated below the plan Q is equal to

$$
\frac{\pi}{6 a^{4}}\left(\left(4 a^{2}+1\right)^{\frac{3}{2}}-1\right)
$$

d. We denote by D the boundary surface of the solid S defined in part b. . Find the outward flux of $\mathcal{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ across the boundary of D :
i. Using the divergence theorem.
ii. Directly using surface integral.
IV. (20 Points) Consider the paraboloid P of equation $z=x^{2}+y^{2}$ and the cone K of equation $z=\sqrt{x^{2}+y^{2}}$.
a. Prove that the intersection of P and K is a circle that we denote by C.
b. Find the counterclockwise circulation of the vector field $\mathcal{F}=y \mathbf{i}-x \mathbf{j}$ around C when viewed from above using
a. Stokes' theorem in two different ways,
b. line integral.
V. (10 Points) Prove, using surface integral, that the area of the lateral surface of the regular cone of revolution of height H and of circular basis of radius R is equal to

$$
\pi R \sqrt{R^{2}+H^{2}}
$$

